ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRIC AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS | Course Title | Code | Semester | T+L Hours | Credit | ECTS | |--------------------------------|---------|-------------|-----------|--------|------| | Advanced Power System Analysis | ECE-652 | FALL-SPRING | 3 + 0 | 3 | 10 | ## Prerequisite Courses None | Туре | Selective | |----------------------|--| | Language | English | | Coordinator | Assist. Prof Dr. Ahmet Onen | | Instructor | Assist. Prof Dr. Ahmet Onen | | Adjunt | none | | Aim | Power system modelling, power flow calculatio and short circuit studies and usage of a programming language during the course of these analysis. | | Learning
Outcomes | learn the principles of power systems learn the three phase system and their connection types learn the how convert system in per-unit system and model power system based on per-unit system learn how to contruct admittance matrix and impedance matrix learn how to calculate power flow for each busses and components by using different iterative techniques learn how to calculate the short circuits for different cases and model power system based on the type of the faults learn economy of power system with and without exinsting of losses. | | Course Content | Power system overview, There phase system and connection (delta-y), Power systems in per-unit system, Admittance matrix modeling and usages, Derivation of network reduction, Derivation of Z bus modification, Power Flow Calculation by using gauss-seidel and newton Raphson methods , Symetrical and unsymetrical components Short circuit calculation, Economic operation of power systems | | WEEKLY TOPICS AND PRELIMINARY STUDY | | | | | | | |-------------------------------------|---|--------------------------|--|--|--|--| | Week | Topic | Preliminary Study | | | | | | 1 | Power system overview: Review of basic power equations | | | | | | | 2 | There phase system and connection (delta-y): Delta and Y connections, their equations, usage and transition from one to another | | | | | | | 3 | Power systems in per-unit system: Conversion of actual values into per unit values to solve equations | | | | | | | 4 | Admittance matrix modeling: How to construct admittance matrix by using power system and usages | | | | | | | 5 | derivation of network reduction: reduction of network by using reduction method to simplfy network | | | | | | | 6 | Derivation of Z bus modification: How to contruct Z matrix and its usage in power systems | | | | | | | 7 | MIDTERM EXAM-1 | | | | | | | 8 | Power Flow Calculation by using gauss-seidel method: Calculation of power flow for each busses by using Gauss Seidel iteration method | | | | | | | 9 | Power Flow Calculation by using newton Raphson method: Calculation of power flow for each busses by using Newton Raphson iteration method | | | | | | | 10 | Symetrical and unsymetrical components: learning how to calculate symetrical and unsymetrical components | | | | | | | 11 | Short circuit calculation: calculation of short circuits for symetrical and unsytmetrical component | | | | | | | 12 | presentation of review | | | | | | | 13 | Short circuit calculation 2: calculation of power system breaker sizes | | |----|--|--| | 14 | Economic operation of power systems without losses: calculation of power system economy without losses | | | 15 | Economic operation of power systems with losses: calculation of power system economy with the losses. | | | 16 | Final Exam | | | SOURCES | | | | | | | |---------------|--|--|--|--|--|--| | Lecture Notes | Lecture slides | | | | | | | Other Sources | TEXTBOOK: 1. Power system analysis, John Grainger and William Stevenson. RECOMMENDED BOOKS: Power System Analysis and Design, Fifth Edition, J. Duncan Glover, Mulukutla S. Sarma, Thomas Overbye. | | | | | | | COURSE MATERIALS SHARING | | | | | |--------------------------|---|--|--|--| | Documents | Lecture notes, slides | | | | | Homeworks | Students will be given one homework each week | | | | | Exams | 1 Midterm and 1 Final Exam | | | | | EVALUATION SYSTEM | | | | | | | |--------------------------------|--------|--------------|--|--|--|--| | SEMESTER STUDY | NUMBER | CONTRIBUTION | | | | | | Midterm | 1 | 20 | | | | | | Homework | 14 | 25 | | | | | | Quiz | 14 | 25 | | | | | | SUB-TOTAL | | 70 | | | | | | Contribution of Semester Study | | 70 | | | | | | Contribution of Final Exam | 1 | 30 | | | | | | TOTAL | | 100 | | | | | | Course Category | | |--------------------------|-----| | Sciences and Mathematics | 30% | | Engineering | 70% | | Social Sciences | 0% | | RE | RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS | | | | | | |-----|--|--------------------|---|---|---|---| | | | Contribution Level | | | | | | INO | No Program Qualifications | | 2 | 3 | 4 | 5 | | 1 | The skills of using mathematics, science and engineering information in advanced research, | | | | | x | | 2 | The skills of analyzing, designing and/or implementing an original system that will be able to solve an engineering problem, | | | | | x | | 3 | The skills of using the required software, hardware and modern measurement equipments in their field of research, | | | | | x | | 4 | The skills of planning independent research and implementing in detail, | | | | | X | | 5 | The skills of following literature, listening to and making technical presentation, writing a paper in academic level, | | | | x | | | 6 | The skills of innovative and interrogative thinking and finding original solutions | | | | X | | ^{*}Increasing from 1 to 5. | ECTS / WORK LOAD TABLE | | | | |------------------------|--------|----------|------------| | Activities | Number | Duration | Total Work | | | | (Hours) | Load | |---|----|---------|--------| | Course Length (includes exam weeks: 16x total course hours) | 16 | 3 | 48 | | Out-of-class Study Time (Pre-study, practice) | 16 | 5 | 90 | | Internet search, library work, literature search | 16 | 4 | 64 | | Presentation | 7 | 3 | 21 | | Homework | 16 | 4 | 64 | | Midterm | 1 | 15 | 15 | | Final Exam | 1 | 20 | 20 | | Total Work Load | | | 322 | | Total Work Load / 30 | | | 322/30 | | Course ECTS Credit | | | 10 |